Bu çalışmada, somatik hücre sayısı ile süt kompozisyonu arasındaki ilişkiler araştırılmıştır. Çiğ süt örnekleri 2012 yılının Şubat, Mart, Nisan ve Mayıs aylarında toplanmıştır. Araştırmada 149 baş Anadolu Mandasi, somatik hücre sayısına göre iki gruba ayrılmıştır. Birinci grupta kuru madde, yağsız kuru madde, yağ, protein, lactoz, kazein, yaş, asitlik, üre, serbest yağ asiti, sitrik asit, donma noktası, pH ile ilgili ortalamalar sırası olarak %16,207±0,184, %10,739±0,059, %5,356±0,193, %4,515±0,057, %5,360±0,033, %3,425±0,065, 1,030,2±0,634gr/cm³, %0,044±0,002, 5,932±0,99mmol/10l, 0,56±0,013°C, %6,57±0,010, 19,02±1,15mg/dl, 7,541±0,239şH ve %0,13±0,001 olarak tespit edilmiştir. İkinci grupta, somatik hücre sayısı ve kuru madde (r =0.259, P=0.002), yağ (r =0.225, P=0.008), protein (r =0.238, P=0.004), sitrik asit (r =-0.179, P=0.031) ve pH (r =-0.236, P=0.004) arasındaki ilişkilerin önemli olduğu saptanmıştır. İkinci grupta somatik hücre sayısı ve protein (r =-0.225, P=0.007), lactoz (r =-0.423, P=0.000), asitlik (r =-0.239, P=0.013), serbest yağ asiti (r =-0.225, P=0.044) ve pH (r =-0.189, P=0.022) arasındaki korelasyonlar önemli bulunmuştur.

Anahtar Kelimeler: Yoğunluk, asitlik, üre, serbest yağ asiti, sitrik asit, donma noktası, pH

Relationships Between Somatic Cell Count and Some Raw Milk Parameters of Anatolian Buffaloes

The aim of the present research was to determine the relationship between somatic cell count and milk composition. Milk samples were collected in the months of from February, March, April and May in 2012. In the study, 149 Anatolian Buffaloes, divided into 2 groups according to the number of somatic cells. In the first group dry matter, non fat dry matter, fat, protein, lactose, casein, density, urea, free fatty acid, freezing point, pH, milk urea nitrogen, acidity and citric acid levels were determined 16.207±0.184, 10.739±0.059, 5.356±0.193, 4.515±0.057, 5.360±0.033, 3.425±0.065, 1.030,2±0.634gr/cm³, 0.044±0.002, 5.932±0.99mmol/10l, 0.56±0.013°C, 6.57±0.010, 19.02±1.15mg/dl, 7.541±0.239şH and 0.13±0.001, respectively. The second group same traits were calculated 17.230±0.127, 10.927±0.043, 6.163±0.125, 4.955±0.052, 5.108±0.024, 3.669±0.042, 1029.5±0.355gr/cm³, 0.047±0.001, 4.484±0.389mmol/10l, 0.55±0.007°C, 6.54±0.011, 21.26±0.542mg/dl, 8.47±0.184şH and 0.124±0.002, respectively. Significant correlations were founded between somatic cell count and dry matter (r =0.259, P=0.002), fat (r =0.220, P=0.008), protein (r =0.285, P=0.001), lactose (r =-0.238, P=0.004), citric acid (r =-0.179, P=0.031) and pH (r =-0.236, P=0.004) in first group. Significant correlations were calculated between somatic cell count and protein (r =-0.225, P=0.007), lactose (r =-0.423, P=0.000), acidity (r =-0.239, P=0.013), free fatty acids (r =-0.225, P=0.044) and pH (r =-0.189, P=0.022) in second group.

Key words: Density, acidity, urea, free fatty acids, citric acids, freezing point, pH

Giriş

Farklı çevre koşullarına adaptasyon yetenekli oldukça iyi, hastalıklara karşı dayanıklı ve kanaatkâr bir hayvan olan manda, organik ürünlere, dolayısı ile organik hayvancılık ile olan talebin hızla arttığı günümüzde, entansif ve ekstansif yetiştiricilik için uygun bir hayvan türüdür. Manda, diğer hayvan türlerinin yeterince değerlendiremediği selüloz oranı yüksek ve kalitesi düşük olan yemleri değerlendirecek süt ve et gibi insan beslenmesinde önemli bir yere sahip olan hayvansal gıdalara dönüştür (Şekerden, 2001; Soysal, 2009). Türkiye’de İstanbul, Bolu, 114

Sağlıklı yaşam için gerekli olan günlük protein ihtiyacı en az %40-50’sinin havansal kökenli olmasi gerekmektedir. Havansal üretim kaynakları Türkiye’de süt, et ve yumurta olup, kişi başına 26 gram kadar olan havansal proteinコンテンツinin %35’i (9,1g) etten, %51’i (13,2 g) sütten ve %14’ü (3,6 g) yumurtadan sağlanmaktadır. Bu durum Türkiye havansal protein üretiminde sütün rolü ve önemini açıkça ortaya koymaktadır. Bu bağlamda bir insanın günlük beslenme ihtiyaçının yaklaşık %10’u da sütün buzdolabında 1-2 hafta bozulmadan depolanması için süt numunesi bentley geniş spektrumlu koruyucu tablet (8 mg 2-bromo-2-nitropropane-1,3-dirol ve 0,30 mg natanaminsini) ilave edilmiştir. Süt örneklerinin analizi (kuru madde, yağ, protein, laktoz, kazein ve üre vb. düzeyleri), Çukurova Üniversitesi, Ziraat Fakültesi, Zootekni Bölümü, Yemler ve Hayvan Besleme Ana Bilim Dalı laboratuuarlarında süt FOS FT120 süt analiz cihazı ile yapılmıştır. Süt örneklerinde pH, pH metre (HI 8314, Hanna Instruments, Italy) kullanılarak tespit edilmiştir.

İstatistik Analizler
Verilerin analizlerinde SPSS 17.1 paket programı kullanılmıştır.
Bulgular

Somatik hücre sayısının düşük olduğu grupta, kuru madde, yağsız kuru madde, yağ, protein, laktoz, kazein, yoğunluk, üre, serbest yağ asidi, domna noktası, pH, süt üre nitrojeni, asitlik ve sitrik asit düzeyleri sırası ile %16,207±0,184, %10,739±0,059, %5,356±0,193, %4,515±0,057, %5,360±0,033, %3,425±0,065, 1,030,2±0,634 gr/cm^{3}, %0,044±0,002, 5,932±0,99mmol/101, 0,56±0,013,C, %6,57±0,010, 19,02±1,15mg/dl, 7,541±0,239°SH ve %0,133±0,004 olarak tespit edilmiştir. Birinci grupta, yağsız kuru madde, yoğunluk, üre, asitlik, serbest yağ asidi, domna noktası ve süt üre nitrojeni ile somatik hücre sayısı arasındaki ilişki önemlidir (P>0,05) bulunmuştur. I. ve II. gruba göre çığ süt kompozisyonu, SHS ile süt içeriği arasındaki ilişkiler ve önem seviyeleri Tablo 1′de verilmiştir.

Kuru madde, yağsız kuru madde, yağ, protein, laktoz, kazein, yoğunluk, üre, serbest yağ asidi, domna noktası, pH, süt üre nitrojeni, asitlik ve sitrik asit düzeyleri somatik hücre sayısının fazla olduğu grupta sırası ile %17,230±0,127, %10,927±0,043, %6,163±0,125, %4,955±0,052, %5,108±0,024, %3,669±0,042, 1,029,5±0,355 gr/cm^{3}, %0,047±0,001, %4,484±0,389mmol/101, 0,55±0,007°C, %6,54±0,011, 21,26±0,542 mg/dl, 8,47±0,184°SH ve 0,124±0,002 olarak belirlenmiştir.

Çizelge 1. SHS gruplarına göre sırt kompozisyonu arasındaki ilişkiler, önem seviyeleri ve grup ortalamalarını söyle edenסש

Table 1. Relationship between milk composition according to the SCC group, the importance level and group averages

<table>
<thead>
<tr>
<th>Parametreler</th>
<th>Somatik Hücre Sayısı</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I. Grup</td>
</tr>
<tr>
<td>Kuru madde (%)</td>
<td>16,207±0,184</td>
</tr>
<tr>
<td>Yağsız Kuru madde (%)</td>
<td>10,739±0,059</td>
</tr>
<tr>
<td>Yağ (%)</td>
<td>5,356±0,193</td>
</tr>
<tr>
<td>Protein (%)</td>
<td>4,515±0,057</td>
</tr>
<tr>
<td>Laktoz (%)</td>
<td>5,360±0,033</td>
</tr>
<tr>
<td>Kazein (%)</td>
<td>3,425±0,065</td>
</tr>
<tr>
<td>Yoğunluk (gr/cm3)</td>
<td>1,030,2±0,634</td>
</tr>
<tr>
<td>Üre (%)</td>
<td>0,0445±0,0024</td>
</tr>
<tr>
<td>Asitlik (oSH)</td>
<td>7,541±0,239</td>
</tr>
<tr>
<td>Serbest yağ asidi (mmol/10 l)</td>
<td>5,932±0,995</td>
</tr>
<tr>
<td>Sitrik asit (%)</td>
<td>0,133±0,004</td>
</tr>
<tr>
<td>Domna noktası (OC)</td>
<td>0,56±0,013</td>
</tr>
<tr>
<td>pH</td>
<td>6,57±0,010</td>
</tr>
<tr>
<td>Süt üre nitrojeni (mg/dL)</td>
<td>19,02±1,15</td>
</tr>
</tbody>
</table>

r: korelasyon katsayısı
Çizelge 2. Süt komponentleri ve somatik hücre sayısı arasındaki ilişkiler

Table 2. The relationship between somatic cell count and milk components

<table>
<thead>
<tr>
<th>Regresyon Denklemi</th>
<th>P değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHS = - 354 + 29,0 Kuru Madde</td>
<td>0,001</td>
</tr>
<tr>
<td>SHS = - 380 + 47,6 Yaşsız Kuru Madde</td>
<td>0,063</td>
</tr>
<tr>
<td>SHS = 2,5 + 23,0 Yağ</td>
<td>0,008</td>
</tr>
<tr>
<td>SHS = - 368 + 104 Protein</td>
<td>0,000</td>
</tr>
<tr>
<td>SHS = 1743 - 309 Laktoz</td>
<td>0,000</td>
</tr>
<tr>
<td>SHS = - 128 + 74,3 Kaze</td>
<td>0,003</td>
</tr>
<tr>
<td>SHS = 108 + 751 Üre</td>
<td>0,430</td>
</tr>
<tr>
<td>SHS = 95,8 + 2,03 Süt üre nitrojeni</td>
<td>0,251</td>
</tr>
<tr>
<td>SHS = 3188 - 2,96 Yoğunluk</td>
<td>0,326</td>
</tr>
<tr>
<td>SHS = - 38,2 + 21,9 Asitlik</td>
<td>0,000</td>
</tr>
<tr>
<td>SHS = 171 + 5,68 Serbest yaş asıtı</td>
<td>0,409</td>
</tr>
<tr>
<td>SHS = 164 - 200 Slitrik ası</td>
<td>0,669</td>
</tr>
<tr>
<td>SHS = 135 + 8 Donma noktası</td>
<td>0,955</td>
</tr>
<tr>
<td>SHS = 3609 - 530 pH</td>
<td>0,001</td>
</tr>
</tbody>
</table>

Süt üre nitrojen değerinin 1.grupta yüksek, II. grupta ise düşük olduğu görülmektedir (Tablo 1). Araştırma somatik hücre sayısının (SHS) işletmelerin beslene profilinin incelmesinde standart bir yöntem olarak kullanılan süt üre nitrojen değerini (Ayaşan, 2009; Konjačić ve ark., 2010; Roy ve ark., 2011) önemli olarak etkilemediği (P>0,05) belirlenmiştir. Süt üre nitrojen değerii SHS yüksek olan grupta %21,26; düşük olan grupta da %19,02 olarak saptanmıştır.

çalışmada çiğ manda sütlerinde süt üre nitrojen değerinin 38.94 mg/100 ml olarak belirlenmiştir. Aynı şekilde, El Shewy ve ark. (2010) mandalarda süt üre nitrojenini kiş ve yağ mevsimleri sırasında 19.60 ve 28.03 mg/dl olarak belirlenmiştir. Konjačić ve ark. (2010) tarafından yapılan bir çalışmada, somatik hücre sayısı ile süt üre nitrojeni arasındaki ilişki -0,10 olarak belirlenmiştir (P<0.05).

Kazin membelerinde sütün donma süresi, süt componente olup, süt proteinlerinin %80’ini oluşturur. Araştırılarda somatik hücre sayısı ile süt kazeyi arasındaki korelasyonun önemli (P>0,05) olduğu belirlenmiş ve incelenen çiğ süt örneklerinde somatik hücre sayısına göre süt kazeyinin %3,42-3,66 arasında değiştiğini tespit edilmiştir. Süt kazeyi somatik hücre sayısı düşük olan grupta düşük, yüksek olan grupta ise fazla bulunmaktadır. Tripaldi ve ark., (2003) tarafından yapılan bir çalışmada somatik hücre sayısının kazeyi oranı üzerinde etkisinin önemli olduğu, somatik hücre sayısı arttıkça süt kazeyi oranının azaldığı tespit edilmiştir.

Çiğ süt ve süt maddeinin katıtp katlamadığı belirlenmesinde önemli bir kriter olarak kullanılan süt kuru madde oranının %16.20-17.23 arasında değiştiğini tespit edilmiştir. I/grupta somatik hücre sayısı ve süt kuru madde oranı arasındaki korelasyon önemli bulunmuştur. Araştırma kapsamında incelen Anadolu mandası çiğ sütlerinde yağsız süt kuru madde oranının %10,73 ile %10,92 değerleri arasında değiştiği tespit edilmiştir. Bu araştırma yağsız süt kuru madde düzeyi, SHS düşük olan grupta düşük (%10,73; SHS yüksek olan grupta da yüksek (%10,92) olarak saptanmıştır. Türk Gıda Kodeksi ile çiğ manda sütünun yağsız süt kuru madde oranının en az %8,50 olması gerektiği bildirilmştir (Anonim, 2000).

Çiğ sütlerde herhangi bir katmanın yapılıp yapılmadığı diğer bir ölcüsü de yoğunluktur. Somatik
hücre sayının fazla olduğu grupta yoğunluk 1.029,5 gr/cm³, somatik hücre sayısının düşük olduğu grupta ise 1.030,2 gr/cm³ olarak belirlenmiştir. Araştırmada yoğunluk ile somatik hücre sayısı arasındaki korelasyonlar istatistiki açıdan önemli olmamış (P>0,05) saptanmıştır. Türk Gıda Kodeksi ilgili tebliginde çığ manda sütlerinin yoğunluğunun 1.028 gr/cm³ olması gerektiği bildirilmektedir (Anonim, 2000). Pakistan’da yapılan bir araştırmada çığ manda sütlerinde yoğunluk 1.033 g/cm³ olarak saptanmıştır (Mahmood ve Usman 2010). Ayrıca Khan ve ark., (2007) nehir ve bataklık mandası sütlerinin yoğunıklarının 1.032 gr/cm³ olarak tespit etmiştir.

Çığ sütün domina noktası sütteki gerçek çözeltili halindeki laktoz ve süt tuzlarının konsantrasyonu hafif olarak gösterilmiştir. domina noktasının belirlenmesi bu konsantrasyon da oluşabilecek değişiklik ile belirlenebilir. Süte katılgında, süt nötralize edici maddeler eklendiğinde, biyrokimyasal yollar ile laktozun parçalanması sonucu, laktoz ve süt tuzları konsantrasyonlarında değişşim ortaya çıkabilir. Süte katılgın belirlenmesi belirlenebilmesi amacı ile süt teknolojisinde kullanılan önemli bir ölçüte domina noktasıdır (Metin, 2005; Aydın ve ark., 2010). Bu araştırmada incelenen çığ manda sütünün domina noktasının SHS’den istatistik olarak etkilememediği (P>0,05) saptanmıştır. Donma domina somatik hücre sayısı fazla olan grupta 0,550C, düşük olan grupta ise 0,560C olarak tespit edilmiştir.

Serbest yağ asidi somatik hücre sayının fazla olduğu grupta 4,48mmol/10L olan belirlenmiş ve somatik hücre sayısı ile serbest yağ asidi arasındaki korelasyon sadece II. grupta önemli (P<0,05) bulunmuştur. Somatik hücre sayının düşük olduğu grupta ise serbest yağ asidi oranı 5,93mmol/10L olarak tespit edilmiştir. Sharma ve ark., (2000) laktonasın erken, orta ve geç safhalarda serbest yağ asiti oranları sırasıyla 0,58±0,01, 0,65±0,02 ve 0,84±0,07mmol/10L olarak saptamtırmış.

Somatik hücre sayısı düşük olan grupta %0,13 olarak tespit edilen çığ süt sitrik asit oranının sadece I. grupta somatik hücre sayısından önemli düzeyde etkilediği belirlenmiştir, sitrik asit düzeyi II. grupta ise %12 olarak belirlenmiştir.

Çığ süt asit, yağ ve protein içeriğinin somatik hücre sayısının artışının asitıcılığın önemli bir derecede (P<0,05) etkilediği bildirilmiştir (Najafi ve ark., 2009). Araştırmada bulgusu bu bildirişle uyum içerisinde Diricini ve ark. (2006) somatik hücre sayısının asitıcılığın manda ve inek sütü kompozisyonunun önemli düzeyde etkilediğini ve özellikle somatik hücre sayısının 400.000 hücre/millilitre düzeyinin üzerine çikmasının süt içeriklerinde önemli değişikliklere yol açtığını bildirmişlerdir. Brezilya’da yapılan bir çalışmadı (Fernandes ve ark., 2010) somatik hücre sayısının çığ manda sütü kompozisyonunu etkilediği saptanmıştır.

Şahin ve ark. (2012) Tokat Merkez ve İlçelerinde yetiştiircilerin mezun olduğu mandaların çığ sütlerinde besin madde bileşenlerini (kuru madde, yağ, protein, kazein ve üre içeriklerinin %0,14-0,25, %0,466±0,00198 ve %0,918±0,192, %4,937±0,0811, %5,231±0,0402, %8,81±0,0701, %0,14-0,22) ve somatik hücre sayısının (SHS) (160000,1±31800 hücre/ml) olarak saptamtırmış. Ayrıca, Manda sütlerindeki normal somatik hücre sayısının 50.000-375.000 hücre/ml arasında değiştiği, çeşitli araştırmacılar tarafından belirlenmiştir (Dhakal ve ark., 1992; Silva ve Silva, 1994; Singh ve Ludri, 2001; Moroni ve ark., 2006; Şekerden, 2011). Araştırmada her iki grupta da belirlenen somatik hücre sayısı ve süt bileşenleri için belirlenen değerler, daha önce yapılan çalışmaların bulgularını ve Türk Gıda Kodeksi
çığ manda sütleri ile ilgili tebliğinde belirlenen değerler ile uyumu bulunmuştur.

Araştırma sonucunda somatik hücre sayısı ile kuru madde, yağ, protein, asitlik arasındaki ilişkilerin pozitif ve önemli, SHS ile laktoz, serbest asit ve yağ, protein, asitlik arasındaki ilişkilerin tespit edilmesi Anadolu mandalarında bu yönde yapılacak seleksiyon çalışmalarında başarıyı etkileyecektir.

Metin, M., 2005. Süt Teknolojisi (Sütün Bileşimi ve İşlenmesi), Ege Üniversitesi Basımevi, Bornova İzmir.

